Fault diagnosis of rotating machinery based on the statistical parameters of wavelet packet paving and a generic support vector regressive classifier
نویسندگان
چکیده
The fault diagnosis of rotating machinery has attracted considerable research attention in recent years because such components as bearings and gears frequently suffer failure, resulting in unexpected machine breakdowns. Signal processing-based condition monitoring and fault diagnosis methods have proved effective in fault identification, but the revelation of faults from the resulting signals requires a high degree of expertise. In addition, it is difficult to extract the fault-induced signatures in complex machinery via signal processing-based methods. In this paper, a new intelligent fault diagnosis scheme based on the extraction of statistical parameters from the paving of a wavelet packet transform (WPT), a distance evaluation technique (DET) and a support vector regression (SVR)-based generic multi-class solver is proposed. The collected signals are first pre-processed by the WPT at different decomposition depths. In this paper, the wavelet packet coefficients at different decomposition depths are referred to as WPT paving. Statistical parameters are then extracted from the signals obtained via the WPT at different decomposition depths. In selecting the sensitive fault features for fault pattern expression, a DET is employed to reduce the dimensionality of the feature space. Finally, a SVR-based generic multi-class solver is proposed to identify the different fault patterns of rotating machinery. The effectiveness of the proposed intelligent fault diagnosis scheme is validated separately using datasets from bearing and gearbox test rigs. In addition, the effects of different wavelet basis functions on the performance of the proposed scheme are investigated experimentally. The results demonstrate that the proposed intelligent fault diagnosis scheme is highly accurate in differentiating the fault patterns of both bearings and gears. 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Using Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes
Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملFault diagnosis of gearboxes using LSSVM and WPT
This paper concentrates on a new procedure which experimentally recognises gears and bearings faults of a typical gearbox system using a least square support vector machine (LSSVM). Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared to select an appropriate wavelet for feature extraction. The fault diagnosis method co...
متن کاملStudying Influence of Preheating Conditions on Design Parameters of Continuous Paint Cure Ovens
This paper concentrates on a new procedure which experimentally recognises gears and bearings faults of a typical gearbox system using a least square support vector machine (LSSVM). Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared to select an appropriate wavelet for feature extraction. The fault diagnosis method co...
متن کامل